
Senior Design

Spring Week 6 Report

Interactive Embedded Systems Learning using the Prairie Learn framework

2/21 - 2/28
Faculty Advisor: Phillip Jones

Team Members:
- Ben Stroup
- Caden Last
- Jack Kennedy - Git Team Lead
- Emmanuel Paz - Server Lead
- Ryan Dela Merced - Project Manager
- Cody Prochaska - Technical Team Lead
- Ryan Bumann

Summary of Progress this Week:
● Continued to work on all aspects of our project

Questions:



Team Member Contributions Hours Total Hrs

Ben Stroup Researched “invalid: not
gradeable” error and found
work around solution.
Applied solution to
homework’s 1-5 and 11.
Matching and order blocks
not able to work around.
Started revising earlier
homework’s.

5 70

Caden Last 5 61

Jack Kennedy 3 51

Emmanuel Paz Created video
authentication on doc
server. Helped Cody figure
out autograding assembly
(in additional notes)

6 69

Ryan Dela Merced 6 54

Cody Prochaska Talked with Manny and
found a promising method
for autograding assembly

7 62

Ryan Bumann Experimented way to make
dynamic graphics faster
with svg’s. Worked on
autograder, specifically how
to move data between all
the different types of files,
Python, JS, C. Worked on

14 75



documentation for setting
up external autograding for
production and local.

Plan for Next Week:

Additional Information:
PrairieLearn Homework Tracking

assembly autograding steps:

required packages:
● gcc-arm-linux-gnueabihf
● gcc-arm-linux-gnueabi
● binutils-arm-linux-gnueabi

take student file “assembly_file.s”
arm-linux-gnueabi-as -o first.o assembly_file.s (Create object file from assembly code)
arm-linux-gnueabi-gcc -o first first.o (Create binary from object file)
qemu-arm -L /usr/arm-linux-gnueabi/ ./first (Run ARM binary using QEMU)

plan for going forward:
● install required packages during docker container setup to allow these commands to be

run
● clean docker container after every submission similar to our c autograder
● create dynamic assembly questions
● look at specific questions and figure out how to best approach autograding each (print

statements comparing registers/memory)
● possibly run the same assembly code on multiple randomized inputs to prove it’s

working correctly, for example a question might say “find largest value in an array of size
x” we only want to have the autograder check the final memory value that the student
stores. The student could just store a hard coded value of what they know to be the
largest given some inputs, so we could randomize the inputs to prove it’s working right.

https://docs.google.com/document/d/1LIyNH3xBphVo-Urmra1Oy2cshm2jniC0Hp-ybSFAmdo/edit?usp=sharing

